Wednesday, September 12, 2007
The Diamond
Cleavage 111 (perfect in four directions) Fracture Conchoidal - step like Mohs Scale hardness 10[1] Luster Adamantine[1] Polish luster Adamantine[1] Refractive index 2.4175–2.4178 Optical Properties Singly Refractive[1] Birefringence none[1] Dispersion .044[1] Pleochroism none[1] Ultraviolet fluorescence colorless to yellowish stones - inert to strong in long wave, and typically blue. Weaker in short wave.[1] Absorption spectra In pale yellow stones a 415.5 nm line is typical. Irradiated and annealed diamonds often show a line around 594 nm when cooled to low temperatures.[1] Streak Colorless Specific gravity 3.52 (+/- .01)[1] Density 3.5-3.53 Diaphaneity Transparent to subtransparent to translucent
Diamond is an allotrope of carbon. It is the hardest known natural material and the third-hardest known material after aggregated diamond nanorods and ultrahard fullerite. Its hardness and high dispersion of light make it useful for industrial applications and jewelry.
Diamonds are specifically renowned as a material with superlative physical qualities — they make excellent abrasives because they can be scratched only by other diamonds, Borazon, ultrahard fullerite, or aggregated diamond nanorods, which also means they hold a polish extremely well and retain their lustre. About 130 million carats (26,000 kg) are mined annually, with a total value of nearly USD $9 billion.[citation needed] About 100,000 kg are synthesized annually.
The name diamond derives from the ancient Greek adamas (αδάμας; “invincible”). They have been treasured as gemstones since their use as religious icons in ancient India and usage in engraving tools also dates to early human history. Popularity of diamonds has risen since the 19th century because of increased supply, improved cutting and polishing techniques, growth in the world economy, and innovative and successful advertising campaigns. They are commonly judged by the “four Cs”: carat, clarity, color, and cut.
Roughly 49% of diamonds originate from central and southern Africa, although significant sources of the mineral have been discovered in Canada, India, Russia, Brazil, and Australia. They are mined from kimberlite and lamproite volcanic pipes, which brought to the surface the diamond crystals from deep in the Earth where the high pressure and temperature enables the formation of the crystals. The mining and distribution of natural diamonds are subjects of frequent controversy such as with concerns over the sale of conflict diamonds (aka blood diamonds) by African paramilitary groups.
HardnessDiamond is the hardest natural material known to man - its hardness set to 10 (hardest) on Mohs scale of mineral hardness and having an absolute hardness value of between 90, 167, and 231 gigapascals in various tests. Diamond's hardness has been known since antiquity, and is the source of its name. However, aggregated diamond nanorods, an allotrope of carbon first synthesized in 2005, are even harder than diamond.
The hardest diamonds in the world are from the New England area in New South Wales, Australia. These diamonds are generally small, perfect to semiperfect octahedra, and are used to polish other diamonds. Their hardness is considered to be a product of the crystal growth form, which is single stage growth crystal. Most other diamonds show more evidence of multiple growth stages, which produce inclusions, flaws, and defect planes in the crystal lattice, all of which affect their hardness.
The hardness of diamonds contributes to its suitability as a gemstone. Because it can only be scratched by other diamonds, it maintains its polish extremely well, keeping its luster over long periods of time. Unlike many other gems, it is well-suited to daily wear because of its resistance to scratching—perhaps contributing to its popularity as the preferred gem in an engagement ring or wedding ring, which are often worn every day. Industrial use of diamonds has historically been associated with their hardness; this property makes diamond the ideal material for cutting and grinding tools. As the hardest known naturally occurring material, diamond can be used to polish, cut, or wear away any material, including other diamonds. However, diamond is a poor choice for machining ferrous alloys at high speeds. At the high temperatures created by high speed machining, carbon is soluble in iron, leading to greatly increased wear on diamond tools as compared to other alternatives. Common industrial adaptations of this ability include diamond-tipped drill bits and saws, or use of diamond powder as an abrasive. Industrial-grade diamonds are either unsuitable for use as gems or synthetically produced, which lowers their value and makes their use economically feasible. Industrial applications, especially as drill bits and engraving tools, also date to ancient times.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment